wor 2024 new logo
ISE2024 Banner Master 728x90px EN
Tsee2024 Banner 970x250px En
eesEU2024 Banner Master 300x250px statisch EN
Ise2024 Banner 300x250px En

How Can We Help?

About Wind – Grid Management

You are here:
← All Topics

Grid management

Grid operators routinely control the supply of electricity by cycling generating plants on or off at different timescales. Most grids also have some degree of control over demand, through either demand management or load shedding. Management of either supply or demand has economic implications for suppliers, consumers and grid operators but is already widespread.
Variability of wind output creates a challenge to integrating high levels of wind into energy grids based on existing operating procedures. Critics of wind energy argue that methods to manage variability increase the total cost of wind energy production substantially at high levels of penetration, while supporters note that tools to manage variable energy sources already exist and are economical, given the other advantages of wind energy. Supporters note that the variability of the grid due to the failure of power stations themselves, or the sudden change of loads, exceeds the likely rate of change of even very large wind power penetrations.

There is no generally accepted ‘maximum’ level of wind penetration, and practical limitations will depend on the configuration of existing generating plants, pricing mechanisms, capacity for storage or demand management, and other factors.

Ise2024 Banner 970x250px En
Tsee2024 Banner 970x250px En
Ise2024 Banner 300x250px En

A number of studies for various locations have indicated that up to 20% (stated as the proportion of wind nameplate capacity to peak energy demand) may be incorporated with minimal difficulty. These studies have generally been for locations with reasonable geographic diversity of wind; suitable generation profile (such as some degree of dispatchable energy and particularly hydropower with storage capacity); existing or contemplated demand management; and interconnection/links into a larger grid area allowing for import and export of electricity when needed. Beyond this level, there are few technical reasons why more wind power could not be incorporated, but the economic implications become more significant and other solutions may be preferred.

At present, very few locations have penetration of wind energy above 5%, and only Denmark is in the range of this 20% penetration level. Discussion about the feasibility of wind penetration beyond the level of 20% is, at present, largely theoretical.

Energy storage

One solution currently being piloted on wind farms is the use of rechargeable flow batteries as a rapid-response storage medium Vanadium redox flow batteries are currently installed at Huxley Hill wind farm (Australia), Tomari Wind Hills at Hokkaido (Japan), as well as in other non-wind farm applications. A further 12 MWh flow battery is to be installed at the Sorne Hill wind farm (Ireland). The supplier concerned is commissioning a production line to meet other anticipated orders.
An alternate solution is to use flywheel energy storage. This type of solution has been implemented by EDA in the Azores on the islands of Graciosa and Flores. This system uses a 18MWs flywheel to improve power quality and thus allow increased renewable energy usage.

V2G (Vehicle to Grid) offers another potential solution. In 2006, several companies (Altairnano, A123 Systems, Electrovaya) announced lithium batteries which could power future EVs (Electric Vehicles) and PHEVs (Plug-in Hybrid Electric Vehicles). A feature of these batteries is a high number of charge/discharge cycles per battery lifetime (Altairnano claim 15,000 cycles). By plugging thousands of cars to the grid when they are not in use (95% of the day on average), the electric car becomes an asset to the grid, rather than a drain only. Each participating vehicle would require upload as well as download capability. The vehicle owner would presumably be rewarded for energy uploaded at the market peak rate. Download (charging) would preferably take place during periods of excess wind (or solar) generation.

ocean billboard

A chicken/egg problem exists in getting V2G off the ground. V2G capability would add to the cost of an already expensive electric car. Until such time as V2G cars are numerous enough to make the concept viable, there is no financial return on V2G investment. A successful launch of V2G will likely require government sponsorship of the startup period. World governments also have a role to play in regulating standard plugs and standard communication protocols between vehicles, billing aggregators and power utility companies. Without such standards, a repeat of the unfortunate situation which sees so many different plugs on appliances throughout the world could eventuate.

eesEU2024 Banner 970x250px EN
eesEU2024 Banner 970x250px EN
Ise2024 Banner 300x250px En

Reach 675k Renewable Energy Members Direct-to-Inbox With Your Press Release! Create Your FREE Account Now!

X

WAIT! PUBLISH YOUR NEWS FREE

FREE TRIAL WHEN YOU JOIN TODAY!

Don't miss out on our limited-time introductory offer to start publishing your content today! Take advantage of this exclusive opportunity while it lasts and share your news with over 600,000 renewable energy professionals.

With our easy-to-use platform, you can get started quickly and easily. Whether you're a seasoned writer, PR professional or just getting started, we welcome you to join our community of creators and share your unique perspective. This offer won't last forever, so sign up now and announce yourself on the largest renewable energy network on the planet!

Registration if FREE and takes under 2 minutes. Once you are registered, please visit our WREN Editorial Suite from your Members' Hub.
MORE INFORMATION..