wor 2024 new logo
ISE2024 Banner Master 728x90px EN
eesEU2024 Banner 970x250px EN
Ise2024 Banner 300x250px En
eesEU2024 Banner Master 300x250px statisch EN

How Can We Help?

About Solar Photovoltaics

You are here:
← All Topics

Photovoltaic systems

A photovoltaic system (informally, PV system) is an arrangement of components designed to supply usable electric power for a variety of purposes, using the Sun (or, less commonly, other light sources) as the power source. Solar PV total global capacity increased during 2010-2013 from 40 GW to 139 GW. In 2013 Germany had the most capacity (36 GW).

PV systems may be built in various configurations:

eesEU2024 Banner 970x250px EN
ocean billboard
eesEU2024 Banner Master 300x250px statisch EN

Off-grid without battery (array-direct)

Off-grid with battery storage for DC-only appliances

Off-grid with battery storage for AC and DC appliances

Grid-tie without battery

Grid-tie with battery storage

eesEU2024 Banner 970x250px EN

A photovoltaic array (also called a solar array) consists of multiple photovoltaic modules, casually referred to as solar panels, to convert solar radiation (sunlight) into usable direct current (DC) electricity. A photovoltaic system for residential, commercial, or industrial energy supply normally contains an array of photovoltaic (PV) modules, one or more DC to alternating current (AC) power converters (also known as inverters), a racking system that supports the solar modules, electrical wiring and interconnections, and mounting for other components. Optionally, a photovoltaic system may include any or all of the following: renewable energy credit revenue-grade meter, maximum power point tracker (MPPT), battery system and charger, GPS solar tracker, energy management software, solar concentrators, solar irradiance sensors, anemometer, or task-specific accessories designed to meet specialized requirements for a system owner. The number of modules in the system determines the total DC watts capable of being generated by the solar array; however, the inverter ultimately governs the amount of AC watts that can be distributed for consumption. For example: A PV system comprising 11 kilowatts DC (kWDC) worth of PV modules, paired with one 10-kilowatt AC (kWAC) inverter, will be limited by the maximum output of the inverter: 10 kW AC.

A small PV system is capable of providing enough AC electricity to power a single home, or even an isolated device in the form of AC or DC electric. For example, military and civilian Earth observation satellites, street lights, construction and traffic signs, electric cars, solar-powered tents, and electric aircraft may contain integrated photovoltaic systems to provide a primary or auxiliary power source in the form of AC or DC power, depending on the design and power demands.

Large grid-connected photovoltaic power systems are capable of providing an energy supply for multiple consumers. The electricity generated can be stored, used directly (island/standalone plant), fed into a large electricity grid powered by central generation plants (grid-connected or grid-tied plant), or combined with one, or many, domestic electricity generators to feed into a small electrical grid (hybrid plant). PV systems are generally designed in order to ensure the highest energy yield for a given investment.

Solar inverter

A solar inverter, or PV inverter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Solar inverters may be classified into three broad types:

Stand-alone inverters, used in isolated systems where the inverter draws its DC energy from batteries charged by photovoltaic arrays. Many stand-alone inverters also incorporate integral battery chargers to replenish the battery from an AC source, when available. Normally these do not interface in any way with the utility grid, and as such, are not required to have anti-islanding protection.

Grid-tie inverters, which match phase with a utility-supplied sine wave. Grid-tie inverters are designed to shut down automatically upon loss of utility supply, for safety reasons. They do not provide backup power during utility outages.

Battery backup inverters, are special inverters which are designed to draw energy from a battery, manage the battery charge via an onboard charger, and export excess energy to the utility grid. These inverters are capable of supplying AC energy to selected loads during a utility outage, and are required to have anti-islanding protection.

Solar micro-inverters

Solar micro-inverter is an inverter designed to operate with a single PV module. The micro-inverter converts the direct current output from each panel in to alternating current. Its design allows parallel connection of multiple, independent units in a modular way.

Micro-inverter advantages reside mostly on single panel power optimization, independent operation of each panel, plug-and play installation, improved installation and fire safety, minimized costs with system design and stock minimization.

A 2011 study at Appalachian State University reports that individual integrated inverter setup yielded about 20% more power in unshaded conditions and 27% more power in shaded conditions compared to string connected setup using one inverter. Both setups used identical solar panels.

Grid tied solar inverters

Solar grid-tie inverters are designed to quickly disconnect from the grid if the utility grid goes down. This is an NEC requirement that ensures that in the event of a blackout, the grid tie inverter will shut down to prevent the energy it produces from harming any line workers who are sent to fix the power grid.

Grid-tie inverters that are available on the market today use a number of different technologies. The inverters may use the newer high-frequency transformers, conventional low-frequency transformers, or no transformer. Instead of converting direct current directly to 120 or 240 volts AC, high-frequency transformers employ a computerized multi-step process that involves converting the power to high-frequency AC and then back to DC and then to the final AC output voltage.[9]

Historically, there have been concerns about having transformerless electrical systems feed into the public utility grid. The concerns stem from the fact that there is a lack of galvanic isolation between the DC and AC circuits, which could allow the passage of dangerous DC faults to be transmitted to the AC side.[10] Since 2005, the NFPA’s NEC allows transformerless (or non-galvanically) inverters. The VDE 0126-1-1 and IEC 6210 also have been amended to allow and define the safety mechanisms needed for such systems. Primarily, residual or ground current detection is used to detect possible fault conditions. Also isolation tests are performed to insure DC to AC separation.

Trackers

A solar tracker tilts a solar panel throughout the day. Depending on the type of tracking system, the panel is either aimed directly at the sun or the brightest area of a partly clouded sky. Trackers greatly enhance early morning and late afternoon performance, increasing the total amount of power produced by a system by about 20–25% for a single axis tracker and about 30% or more for a dual axis tracker, depending on latitude.Trackers are effective in regions that receive a large portion of sunlight directly. In diffuse light (i.e. under cloud or fog), tracking has little or no value. Because most concentrated photovoltaics systems are very sensitive to the sunlight’s angle, tracking systems allow them to produce useful power for more than a brief period each day. Tracking systems improve performance for two main reasons. First, when a solar panel is perpendicular to the sunlight, it receives more light on its surface than if it were angled. Second, direct light is used more efficiently than angled light. Special Anti-reflective coatings can improve solar panel efficiency for direct and angled light, somewhat reducing the benefit of tracking.

Mounting systems

Modules are assembled into arrays on some kind of mounting system, which may be classified as ground mount, roof mount or pole mount. For solar parks a large rack is mounted on the ground, and the modules mounted on the rack. For buildings, many different racks have been devised for pitched roofs. For flat roofs, racks, bins and building integrated solutions are used. Solar panel racks mounted on top of poles can be stationary or moving. Side-of-pole mounts are suitable for situations where a pole has something else mounted at its top, such as a light fixture or an antenna. Pole mounting raises what would otherwise be a ground mounted array above weed shadows and livestock, and may satisfy electrical code requirements regarding inaccessibility of exposed wiring. Pole mounted panels are open to more cooling air on their underside, which increases performance. A multiplicity of pole top racks can be formed into a parking carport or other shade structure. A rack which does not follow the sun from left to right may allow seasonal adjustment up or down.

Monitoring and metering

The metering must be able to accumulate energy units in both directions or two meters must be used. Many meters accumulate bidirectionally, some systems use two meters, but a unidirectional meter (with detent) will not accumulate energy from any resultant feed into the grid.

In some countries, for installations over 30kWp a frequency and a voltage monitor with disconnection of all phases is required. This is done where more solar power is being generated than can be accommodated by the utility, and the excess can not either be exported or stored. Grid operators historically have needed to provide transmission lines and generation capacity. Now they need to also provide storage. This is normally hydro-storage, but other means of storage are used. Initially storage was used so that baseload generators could operate at full output. With variable renewable energy, storage is needed to allow power generation whenever it is available, and consumption whenever it is needed. The two variables a grid operator have are storing electricity for when it is needed, or transmitting it to where it is needed. If both of those fail, installations over 30kWp can automatically shut down, although in practice all inverters maintain voltage regulation and stop supplying power if the load is inadequate. Grid operators have the option of curtailing excess generation from large systems, although this is more commonly done with wind power than solar power, and results in a substantial loss of revenue. Three-phase inverters have the unique option of supplying reactive power which can be advantageous in matching load requirements

Standalone applications

A standalone system does not have a connection to the electricity “mains” (aka “grid”). Standalone systems vary widely in size and application from wristwatches or calculators to remote buildings or spacecraft. If the load is to be supplied independently of solar insolation, the generated power is stored and buffered with a battery. In non-portable applications where weight is not an issue, such as in buildings, lead acid batteries are most commonly used for their low cost and tolerance for abuse. A charge controller may be incorporated in the system to: a) avoid battery damage by excessive charging or discharging and, b) optimizing the production of the cells or modules by maximum power point tracking (MPPT). However, in simple PV systems where the PV module voltage is matched to the battery voltage, the use of MPPT electronics is generally considered unnecessary, since the battery voltage is stable enough to provide near-maximum power collection from the PV module. In small devices (e.g. calculators, parking meters) only direct current (DC) is consumed. In larger systems (e.g. buildings, remote water pumps) AC is usually required. To convert the DC from the modules or batteries into AC, an inverter is used

Small scale solar systems

With a growing DIY-community and an increasing interest in environmentally friendly “green energy”, some hobbyists have endeavored to build their own PV solar systems from kits[25] or partly diy.[26] Usually, the DIY-community uses inexpensive or high efficiency systems (such as those with solar tracking) to generate their own power. As a result, the DIY-systems often end up cheaper than their commercial counterparts.[29] Often, the system is also hooked up into the regular power grid, using net metering instead of a battery for backup. These systems usually generate power amount of ~2 kW or less. Through the internet, the community is now able to obtain plans to construct the system (at least partly DIY) and there is a growing trend toward building them for domestic requirements. Small scale solar systems are now also being used both in developed countries and in developing countries, for residences and small businesses. One of the most cost effective solar applications is a solar powered pump, as it is far cheaper to purchase a solar panel than it is to run power lines

Grid-connected applications

A grid connected system is connected to a larger independent grid (typically the public electricity grid) and feeds energy directly into the grid. This energy may be shared by a residential or commercial building before or after the revenue measurement point. The difference being whether the credited energy production is calculated independently of the customer’s energy consumption (feed-in tariff) or only on the difference of energy (net metering). Grid connected systems vary in size from residential (2-10kWp) to solar power stations (up to 10s of MWp). This is a form of decentralized electricity generation. The feeding of electricity into the grid requires the transformation of DC into AC by a special, synchronising grid-tie inverter.[33] In kW sized installations the DC side system voltage is as high as permitted (typically 1000V except US residential 600V) to limit ohmic losses. Most modules (72 crystalline silicon cells) generate 160W to 300W at 36 volts. It is sometimes necessary or desirable to connect the modules partially in parallel rather than all in series. One set of modules connected in series is known as a ‘string’.

Building-mounted and building-integrated systems

In urban and suburban areas, photovoltaic arrays are commonly used on rooftops to supplement power use; often the building will have a connection to the power grid, in which case the energy produced by the PV array can be sold back to the utility in some sort of net metering agreement. Some utilities, such as Solvay Electric in Solvay, NY, use the rooftops of commercial customers and telephone poles to support their use of PV panels. Solar trees are arrays that, as the name implies, mimic the look of trees, provide shade, and at night can function as street lights.

In agricultural settings, the array may be used to directly power DC pumps, without the need for an inverter. In remote settings such as mountainous areas, islands, or other places where a power grid is unavailable, solar arrays can be used as the sole source of electricity, usually by charging a storage battery.[citation needed] There is financial support available for people wishing to install PV arrays. Incentives range from federal tax credits to state tax credits and rebates to utility loans and rebates. A listing of current incentives can be found at the Database of State Incentives for Renewables and Efficiency.

System performance

Solar insolation is made up of direct radiation, diffuse radiation and reflected radiation (or albedo).The absorption factor of a PV cell is defined as the fraction of incident solar irradiance that is absorbed by the cell. At high noon on a cloudless day at the equator, the power of the sun is about 1 kW/m², on the Earth’s surface, to a plane that is perpendicular to the sun’s rays. As such, PV arrays can track the sun through each day to greatly enhance energy collection. However, tracking devices add cost, and require maintenance, so it is more common for PV arrays to have fixed mounts that tilt the array and face solar noon (approximately due south in the Northern Hemisphere or due north in the Southern Hemisphere). The tilt angle, from horizontal, can be varied for season, but if fixed, should be set to give optimal array output during the peak electrical demand portion of a typical year for a stand alone system. This optimal module tilt angle is not necessarily identical to the tilt angle for maximum annual array energy output. The optimization of the a photovoltaic system for a specific environment can be complicated as issues of solar flux, soiling, and snow losses should be taken into effect. In addition, recent work has shown that spectral effects can play a role in optimal photovoltaic material selection. For example, the spectral albedo can play a significant role in output depending on the surface around the photovoltaic system and the type of solar cell material.

For the weather and latitudes of the United States and Europe, typical insolation ranges from 4 kWh/m²/day in northern climes to 6.5 kWh/m²/day in the sunniest regions. Typical solar panels have an average efficiency of 15%, with the best commercially available panels at 21%. Thus, a photovoltaic installation in the southern latitudes of Europe or the United States may expect to produce 1 kWh/m²/day. A typical “150 watt” solar panel is about a square meter in size. Such a panel may be expected to produce 0.75 kWh every day, on average, after taking into account the weather and the latitude, for an insolation of 5 sun hours/day. A typical 1 kW photovoltaic installation in Australia or the southern latitudes of Europe or United States, may produce 3.5-5 kWh per day, dependent on location, orientation, tilt, insolation and other factors.[46] In the Sahara desert, with less cloud cover and a better solar angle, one could ideally obtain closer to 8.3 kWh/m²/day provided the nearly ever present wind would not blow sand onto the units. The area of the Sahara desert is over 9 million km². 90,600 km², or about 1%, could generate as much electricity as all of the world’s power plants combined

Tracking the sun

Trackers and sensors to optimise the performance are often seen as optional, but tracking systems can increase viable output by up to 45%. PV arrays that approach or exceed one megawatt often use solar trackers. Accounting for clouds, and the fact that most of the world is not on the equator, and that the sun sets in the evening, the correct measure of solar power is insolation – the average number of kilowatt-hours per square meter per day. For the weather and latitudes of the United States and Europe, typical insolation ranges from 2.26 kWh/m²/day in northern climes to 5.61 kWh/m²/day in the sunniest regions.

For large systems, the energy gained by using tracking systems can outweigh the added complexity (trackers can increase efficiency by 30% or more). For very large systems, the added maintenance of tracking is a substantial detriment. Tracking is not required for flat panel and low-concentration photovoltaic systems. For high-concentration photovoltaic systems, dual axis tracking is a necessity.

Pricing trends affect the balance between adding more stationary solar panels versus having fewer panels that track. When solar panel prices drop, trackers become a less attractive option.

Performance factors

Uncertainties in revenue over time relate mostly to the evaluation of the solar resource and to the performance of the system itself. In the best of cases, uncertainties are typically 4% for year-to-year climate variability, 5% for solar resource estimation (in a horizontal plane), 3% for estimation of irradiation in the plane of the array, 3% for power rating of modules, 2% for losses due to dirt and soiling, 1.5% for losses due to snow, and 5% for other sources of error. Identifying and reacting to manageable losses is critical for revenue and O&M efficiency. Monitoring of array performance may be part of contractual agreements between the array owner, the builder, and the utility purchasing the energy produced.[citation needed] Recently, a method to create “synthetic days” using readily available weather data and verification using the Open Solar Outdoors Test Field make it possible to predict photovoltaic systems performance with high degrees of accuracy. This method can be used to then determine loss mechanisms on a local scale – such as those from snow or the effects of surface coatings (e.g. hydrophobic or hydrophilic) on soiling or snow losses. Access to the Internet has allowed a further improvement in energy monitoring and communication. Dedicated systems are available from a number of vendors. For solar PV system that use microinverters (panel-level DC to AC conversion), module power data is automatically provided. Some systems allow setting performance alerts that trigger phone/email/text warnings when limits are reached. These solutions provide data for the system owner and the installer. Installers are able to remotely monitor multiple installations, and see at-a-glance the status of their entire installed base

Costs and economy

Costs of production have been reduced dramatically in recent years for more widespread use through production and technological advances. For large-scale installations, prices below $1.00 per watt are now common. A price decrease of 50% had been achieved in Europe from 2006 to 2011 and there is a potential to lower the generation cost by 50% by 2020. Crystal silicon solar cells have largely been replaced by less expensive multicrystalline silicon solar cells, and thin film silicon solar cells have also been developed recently at lower costs of production. Although they are reduced in energy conversion efficiency from single crystalline “siwafers”, they are also much easier to produce at comparably lower costs.

eesEU2024 Banner 970x250px EN
Tsee2024 Banner 970x250px En
Tsee2024 Banner 300x250px En

Reach 675k Renewable Energy Members Direct-to-Inbox With Your Press Release! Create Your FREE Account Now!

X

WAIT! PUBLISH YOUR NEWS FREE

FREE TRIAL WHEN YOU JOIN TODAY!

Don't miss out on our limited-time introductory offer to start publishing your content today! Take advantage of this exclusive opportunity while it lasts and share your news with over 600,000 renewable energy professionals.

With our easy-to-use platform, you can get started quickly and easily. Whether you're a seasoned writer, PR professional or just getting started, we welcome you to join our community of creators and share your unique perspective. This offer won't last forever, so sign up now and announce yourself on the largest renewable energy network on the planet!

Registration if FREE and takes under 2 minutes. Once you are registered, please visit our WREN Editorial Suite from your Members' Hub.
MORE INFORMATION..